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Kinetics of Phase Ordering on Curved Surfaces
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An interface description and numerical simulations of model A kinetics are used
for the first time to investigate the intrasurface kinetics of phase ordering on
corrugated surfaces. Geometrical dynamical equations are derived for the
domain interfaces. The dynamics is shown to depend strongly on the local
Gaussian curvature of the surface, and can be fundamentally different from that
in flat systems: dynamical scaling breaks down despite the persistence of the
dominant interfacial undulation mode; growth laws are slower than ¢2 and
even logarithmic; a new very-late-stage regime appears characterized by
extremely slow interface motion; finally, the zero-temperature fixed point no
longer exists, leading to metastable states. Criteria for the existence of the latter
are derived and discussed in the context of more complex systems.

KEY WORDS: Numerical simulations, interface description, kinetics, phase
ordering, relaxation, dynamical scaling, model A, curved surface, lipid bilayer,
dominant length scale.

1. INTRODUCTION

Many two-dimensional surfaces exhibit internal degrees of freedom which
allow for phase ordering or phase separation to occur within the static or
dynamic surface. Examples are lipid bilayer membranes, " crystal growth
on curved surfaces,® and thin film deposition.®® Interaction between the
shape and internal degrees of freedom of the surface are believed to play an
important role in such systems, initiating, modifying or eliminating chemi-
cal or physical intra-membrane domain-ordering processes. The dynamics
can be induced not only by varying the temperature, but also by changing
such variables as the pH or ionic concentration of an aqueous embedding
solution (in the case of lipid bilayers), or the lattice mismatch and deposi-
tion rate (film growth). Experimentally, both spinodal decomposition in
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binary mixtures and phase ordering in one-component systems have been
observed. Phase ordering is more relevant to non-fluid phases and, in the
case of biological lipid membranes, is possibly involved in the control of
enzyme adsorption and protein-enzyme interaction on the surface of a
bilayer.

For curved surfaces, the consequences of the interplay between surface
shape and intra-surface pattern formation are at present largely unexplored
in literature. The small amount of experimental results are rudimentary,
and most of the theoretical work has been limited, due to the mathematical
and numerical challenges involved, to equilibrium models and shape-per-
turbation calculations around equilibrium. Many of the theories assume
that the domains are already formed (see, for instance, ref. 5). Typically,
some form of bilinear coupling between an intra-membrane order
parameter and the local geometry of the surface, such as mean curvature,
is used. When kinetics are considered, one obtains a dynamical equation of
state similar to that of the Random-Field Ising model with long-range
correlations,® but with the long-range correlations entering through the
gradients of the intra-surface order-parameter.””” One result has been the
creation of shape phase-diagrams.® Recently, some researchers have
done simulations to investigate shape change in surfaces made of two types
of lipids.®>'® These simulations, relying on Monte Carlo and bulk
Langevin equations, are extremely computer intensive, limiting the possible
complexity of the surfaces or the run time of the simulations to experimen-
tally irrelevant cases.

Any dynamics occurring in curved spaces invariably introduces new
and non-trivial concepts and effects which require considerable care and
exploration. The problem of how the dynamical shape of a surface and an
intra-membrane ordering process may affect each other is complicated. We
therefore first consider the simplest case where there is no explicit coupling
between the two, and new correlations arise through the geometry of the
curved surface. Thus, rather than inquiring about the shape-change when
the membrane is inhomogeneous, we investigate the influence of non-
euclidean geometry on pattern formation and phase ordering kinetics when
it occurs on a static curved surface. By comparing the results with known
results for model A kinetics within a flat (euclidean) surface, we identify the
sole effects arising from surface curvature. We hope that this will subse-
quently allow for a systematic extension of the problem in which the sur-
face is not static and the explicit coupling between the intra-membrane
order parameter and the local geometry of the surface is also included.

More explicitly, we report in this paper novel results of a ground-up
study of relaxational pattern-formation occurring within static two-dimen-
sional surfaces, using model AV as a starting point, without any explicit



Kinetics of Phase Ordering on Curved Surfaces 951

coupling to the local geometry other than through diffusion.”’ In Section
2, we setup the analytical framework for the intra-surface phase ordering
kinetics on curved surfaces. The bulk kinetics are described by the Non
Euclidean Model A equation, Eq.(1). Systems with phase ordering
instabilities, with homogeneous initial state and small random fluctuations,
often evolve to form domains separated by sharp interfaces. The bulk part
of the domains equilibrates rapidly and the interface width saturates within
a very short time. Further time evolution involves only interface dynamics
in which interfacial widths hardly change, but the total interfacial length
decreases in order to minimise the system free energy. In order to take
advantage of this type of kinetics, we deduce in Section 2, a set of equa-
tions [Egs. (2), (13) and (28)], which are equivalent to the bulk Non
Euclidean Model A Eq. (1). In this interface description, local geodesic cur-
vature of the interface, local velocity of the interface and total interfacial
length L(t) play a central role. One of the novel quantities that we
investigate in detail in this paper (apparently for the first time in literature)
is the Geodesic Curvature Autocorrelation Function. Equation (2) is the
generalization of the well-known Allen—-Cahn equation for intra-surface
interface dynamics in curved surface systems. Equations (13) and (28)
couple to Eq. (2) due to the geometry of interfaces on a curved surface.

In Section 3, we explain how the numerical simulations were carried
out: the interface description became pivotal to the feasibility of simula-
tions, providing gains of 50-100 in runtime with regards to the standard
bulk description, for the system sizes that were explored. We also describe
the checks on the numerical algorithm that we performed for special cases
where analytic results are known.

For all the results described in Sections 4 to 7, we first integrated the
bulk Non Euclidean Model A Eq. (1) for a short time to generate sharp
interfaces on a variety of surfaces, extracted the interfaces, and then
evolved them in time using three coupled interface equations. Three impor-
tant quantities used in these sections are K, IZ and K, which must not
be confused: the intra-surface interfaces can be characterized locally by
their total interface curvature K or by their geodesic curvature K while a
curved surface, on which those interfaces move, can be described locally by
its Gauss curvature radius K;.""? These simulation results discuss how K
affects interface evolution and what are some of the new features of Non
Euclidean Model A dynamics on corrugated surfaces, such as non-power-
law domain growth, a new dynamical regime characterized by extremely
slow interface motion, breakdown of dynamical scaling, time-dependence
of various dynamical lengths not relevant in flat systems, and metastable
interface configurations and activated hopping. Two measurements of
interest for characterizing the domain morphology are introduced, namely
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the autocorrelation functions for Kg and K. We give some quantitative and
qualitative analytical explanations for these results while pointing to some
others which require further study.

2. INTERFACE EQUATIONS

It was shown in ref. 7 that on curved surfaces, the equation for model-A
kinetics (sometimes refered to also as the time-dependent Ginzburg-Landau
equation, or TDGL for short) must be written as

Y RN N 1)
where M and ¢ are positive phenomenological constants, ¢ is time and ¢ is
the intra-surface order parameter, while Vi, is the Laplace—Beltrami
operator.® Some phenomenological parameters have been eliminated by
appropriately rescaling space, time, and ¢."* We refer to Eq. (1) as the
Non-Euclidean Model A equation. The order parameter could be for
instance the local magnetization at the surface of a corrugated anisotropic
Ising ferromagnet, following a quench from a high-temperature, disordered
(i.e. paramagnetic) state in thermal equilibrium, to a low-temperature, ther-
modynamically unstable region of the temperature-magnetization phase-
diagram. In this equation, there is no constraint on the average order
parameter per unit area as a function of time. This differs from the well
known model B which describes spinodal decomposition in binary
mixtures,'* and for which the order parameter is conserved. From Eq. (1)
we derived in ref. 7 a Non-Euclidean Interface Velocity equation for inter-
faces on curved surfaces,

= MER, (2)

where 7 is the local interface velocity and Kg is the local geodesic curvature
of the interface on the surface. Equation (2) reduces to the well-known
Allen-Cahn equation in the Euclidean limit.*> Note that the derivation of
Eq. (2) given in ref. 7, although concise, is not as geometrically transparent
as the different one given in ref. 16.

Further insight into the interface dynamics can be gained by considering
the evolution of I?g in time. We give here a parameterization-invariant
derivation of geometrical dynamical equations valid for any model-A inter-
face on any Riemannian surface. To do this, it is necessary to parameterize
the interface.
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Because, as indicated by Eq. (2), the interface moves normal to itself,
it is convenient to use a parameterization of interfaces which exploits this
feature: the normal gauge."'”’ This dynamical constraint defines the gauge,
whose units of length are therefore not physical units, and change both in
time and space. We denote the parameter of the normal gauge by «. Physi-
cal measurements, on the other hand, are always done using real (hence
constant) units of distance. The parameterization which satisfies this is the
arclength gauge, whose parameter we denote by s.

The two gauges are linked by a metric which we denote \/é Denote
the curvilinear coordinate system on the surface by (u', u?)=(u, v). The
surface is described by a series of three-dimensional vectors X = [ x(u, v),
y(u, v), z(u, v)], while the interface is described by a series of two-dimen-
sional “vectors” R(a)=[u(«x), v(x)] or equivalently by a series of three-
dimensional vectors R(«) = [x(«), y(«), z(x)]. We use the convention of an
arrow to denote a three-dimensional vector, and a tilde a two-dimensional
vector in the tangent space of the surface. A typical model-A interface,
labeled 7, is shown in Fig. 1, along with the vector R going from some
arbitrary origin on the surface to a point P(a) on I, and the tangent 7 and
normal 7 to the interface at P. Every point of an interface corresponds to
a unique a which does not change in time, since the interface moves normal
to itself.

v

a>

ﬁ P (0(.)

R
>

O u

Fig. 1. An interface / in the (u, v) space of the surface. A point P of the interface has
parameter o and is given by a vector R(P) (bold R in figure). # and 74 are the tangent and
normal vectors to I at P.
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The relationship between the differential elements of length ds and da
is given by

ds= \/é da (3)
where the metric is defined by
OR|?
glo, t)= P (4)
o

Because da is constant in time while ds is not, g changes in time. Its evolu-
tion equation must be determined, making use of the requirement that a
point of coordinate « moves only perpendicularly to the interface. This can
be done in the following way.

First note that £ and V are defined as:

—

OR
os

OR

— 6
), ©
where a prime denotes differentiation relative to the arclength s. Taking the
time derivative at constant a on both sides of Eq. (4), we have

D

=(u',v") (5)

"

V
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Now since
,_Ou 1
‘=g (8)
, 0%« —1log
=02 28 on ©)

the Laplacian in arclength s is

> 190> 0
o g " o (10)
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so that from the definition of the (three-dimensional) interface curvature
vector K = (0°R/0s?),

0’R

5z = e(K=1" /o) (1)

Substituting Eq. (11) in Eq. (7), using the orthogonality between v and 7
and rewriting Eq. (7) in terms of \/é rather than g one obtains

(a f) ~JeR-¥ (12)

o

which further reduces to

<a \/> —Jek, v (13)

o

when one notes that v is parallel to 7 and lies within the surface, whereas
K has a component parallel to ¥ and one normal to the surface. Le., if the
normal to the surface is denoted by N, then K= |K,| 7/ + |K,| N, with K,
the three-dimensional curvature of a geodesic tangent to / at P. Equation
(2) and the evolution equation for g, Eq. (13), are two of the three interface
equations that are used in our interface description.
Now we proceed with a similar but lengthier derivation for (0K, /0t),
The dot product of 7i with Eq. (11) yields
i *R

2:| gl

g (14

Applying the time derivative and using the chain rule,
<8 |I?g|> n 0? <6ﬁ> i 0°R <8g> W
azagaa ot gaoc ot ),
The second term is simplified via Eq. (14) and Eq. (13). The third one is

simplified by using Eq. (11) and noting that 7i can only change in direction,
hence (07i/0t), is oriented along 7. With those simplifications one gets

0K, i % L. [0
<az>a . AR R, g at <az>a (16)

The second derivative of v is

on\ 0*R
&) 5 09

o’ 0* . 0% oRov 0%
002 5oc(n) 002 +26a6a+nﬁ (17)



956 Schoenborn and Desai

The first term is simplified by writing the second derivative of 7 in terms
of arclength via Eq. (3), applying the chain rule and using the two Frenet
equations for curves in Riemannian spaces’®

0t

5= IR, 1=K, (18)
on .
5= Kl (19)

This yields

ff |K|f gIK,| K (20)

The second term of Eq. (17) vanishes when dot-multiplied with 7 given the
second Frenet equation. After substitution of Eq. (17) and (20) in (16), we
have

OIK N\ 1% . = . [0n
< 5 >a_gaa2+|1<g|1<g. —Jg o't <az>a (21)

Finally we show that \/éf-(aﬁ/at)a in the last term of Eq. (21)
satisfies

on ov
Jet- <az> = Vg5, (22)

ov
-—= (23)

It is easiest to show this by first deriving (0v/0s). The norm of the velocity is

-+(%)
v=~n- o).

Taking the arclength derivative and using the chain rule,

ov A 0 [OR OR\ on
5 m(m)ﬁ(azl'as (24

GE. @
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since ¥ is orthogonal to (6A/ds). Using £ =0dR/ds and the chain rule again

yields
ov , [0t
A= (a), 26)
. [0R
- (a0), 7

where the second equality is obtained by using d(7-7)/df =0, completing
the demonstration.

Thus, substituting Eq. (23) into Eq. (21) and using Eq. (10), we get
the last of the three curvature equations:

oK 0? L
< | g') LR R, T (28)

ot 0s?

The three equations, Eq. (2), Eq. (13) and Eq. (28), are a coupled set of
curvature equations describing the evolution of interfaces in the Non
Euclidean Model A. Note that in these equations, if two-dimensional vec-
tors are used, the scalar product must be properly defined via the surface’s
covariant metric tensor g; = (0X/0u’) - (0X/0u’), ie. d-b=a,g',=d'g,b’,
where an implicit sum over alternate repeated indices is assumed. Equation
(28) and Eq. (13) are purely geometric but only valid in the normal gauge
and when v is parallel to 7.

The first term on the right hand side of Eq. (28) is diffusive and causes
all modes of K, to dissipate, except the zeroth mode (K, =0) which is not
affected by it. The diffusive term thus seeks to shrink interfaces either into
straight lines (on a curved surface, geodesics) which have zero K,, or per-
fect (i.e. geodesic) circles which have constant K,. On the other hand, due
to the Non-Euclidean Interface Velocity equation, the second term on the
right hand side of Eq. (28) is cubic in K,. It seeks to increase the curvature
and dominates when the diffusive term is negligible, i.e. for straight lines
and circular domains. Hence it causes circular domains to shrink in radius,
as is indeed the case in Euclidean model A. If the circular domain is also
a geodesic, so that K, =0 everywhere along the interface, the domain will
not change in shape. When the model-A dynamics proceeds from a quench
of a system from a high temperature, such that the domains are initially
very disordered, the diffusive term of Eq. (28) dominates, broadly speaking,
during the early stages of interface motion, whereas the cubic term
dominates only in interfaces which have become circular. However, this
was verified in numerical simulations to be only approximately true.
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Another interesting aspect of the geometric equations is that substitu-
tion of Eq. (2) into Eq. (13) shows how (0 \/é/at)a is always negative.
Therefore the distance between close-by interface points always decreases
in time, and by extension also the total length of an interface, which is
given by L={ /g dw:

oL\ _ 2 (@2
<al>m——Mg | 1R, 12 ds (29)

Without these results it is difficult to ascertain whether Eq. (2) is consistent
with the physical nature of the bulk equation for model A kinetics, where
the quantity of order-parameter gradients (equivalent to the total length of
interface in the system) should monotonically decrease in time.

The apparent simplicity of the Non-Euclidean Interface Velocity equa-
tion can be misleading. The geodesic curvature of a line on a curved
manifold depends both on the position of that line and its orientation on
the surface. Therefore, K, introduces into the dynamics a new, position-
and orientation-dependent length scale. This strongly suggests that Non
Euclidean Model A dynamics cannot be self-similar as it is in flat systems,
and therefore that dynamical scaling will not be observed on curved sur-
faces, except perhaps on self-affine surfaces, such as found over a certain
range of length scales in lipid bilayer membranes. Different surfaces should
show different phase-ordering kinetics. This is further evidenced in Eq. (29)
where L—proportional to the reference length scale of the dynamics, if it
is present!'®—depends on | |K,|* ds.

Nonetheless, a study of Non Euclidean Model A on the torus
manifold, reported in ref. 7, revealed no clear signature of the non-
Euclidean nature of the surface when investigated through the evolution of
the interface density (quantity of interface per unit area) and the A-struc-
ture factor!® of the order parameter. The latter is a two-dimensional order
parameter structure factor which depends only on the intrinsic geometry of
the surface and the order-parameter configurations. This absence of
signature may be due not only to the coarse-grained nature of the A-struc-
ture factor, but also to finite size effects, since domains feel the geometry
only when their size becomes comparable to the torus size. This suggests
that surfaces with geometrical features closer to those of model-A domains
at early times should be investigated. Indeed, as we show in Section 6,
interfaces can get caught around certain surface bumps, causing a drastic
slowing down and even immobilization of the model-A dynamics. Before
investigating this, we outline the numerical methods used in the simula-
tions.
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3. NUMERICAL METHOD

It is customary to simulate equation for model A kinetics by discretiz-
ing them and evolving the order-parameter configurations via an Euler
integration scheme. The main limitation of such discretization schemes is
that the time step for evolving the system is limited by the smallest space
mesh in the system. On curved surfaces, this can be—and most often is—
a severe impediment, as the surface mesh can rarely be optimized so as to
be homogeneous. Doing this involves computational challenges in its own
right. Slightly more sophisticated methods such as spectral, predictor-
corrector and implicit schemes are possible but the stiffness of the model-A
kinetic equation still induces strong dependencies on spatial mesh which
make them unappealing.

We have found that using Eq. (2) as the basis for an interface descrip-
tion has many advantages over a bulk description as given by a model A
equation. Namely, the quantity of information to manipulate at every time
step is an order of magnitude smaller at the beginning of the simulation
than with a bulk description, and rapidly decreases in time, while for the
bulk description it remains constant in time, even if the order-parameter
configuration has become completely homogeneous. Secondly, the surface
can be discretized independently from the interfaces so that numerical
instabilities associated with the surface mesh disappear. Thirdly, the
interfaces being one-dimensional, the integration algorithms remain fairly
simple and more sophisticated algorithms are much easier to implement.
Finally, certain quantities of interest, which we introduce below, are far
easier and faster to compute from the interfaces than from the bulk con-
figurations.

One inevitable drawback of an interface description is that it cannot
describe how interfaces form from the small order-parameter fluctuations
present just after the quench. Therefore, the initial interface configurations
must be obtained independently. The easiest way to do this is of course to
use the bulk description to evolve the order parameter for only the
relatively short time necessary for interfaces to become established, and
then extract the interfaces from the resulting configurations. Even for short
integration times, this suffers from the drawbacks mentioned above. We
give one alternative, in appendix C of ref. 16, devoid of any bulk steps and
dependent only on the statistical properties of interfaces.

For this reason, initial interface configurations are always obtained by
integrating the bulk equation (1) from t=0% to =17, when the domains
have fully formed and interfaces can be extracted. For integration of bulk
equations on curved surfaces, ref. 20 has proved invaluable. Once the bulk
configurations are obtained, the interface extraction is done with a program
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Fig. 2. A typical early-time configuration of interfaces in a flat system.
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which we refer to as geninterf. A full-length run, done by a program we
refer to as IFinteg, then takes the interface configurations from z=17 to
¢t =10000. Such long runs were necessary in Non Euclidean Model A due
to the slowing down of the dynamics at later times. A typical initial inter-
face configuration is shown in Fig. 2, as would be seen in flat systems and
in surfaces whose geometric features are much larger than the size of the
initial interface convolutions.

An interface represented by its ordered set of coordinate points R(x)
is evolved in the tangent space (u!, u?) (=(u, v)) of the surface via the
Non-Euclidean Interface Velocity equation by writing the latter in the form

ou’ .
< ”> = MEK,n' (30)
ot /,

where n' is the ith component of the interface normal 7, and K, is given,
in compact notation, by

nggijui/(ujn +I—viluk1uh) (31)

where again implicit summation over repeated indices {i, j=1,2} is
assumed. The prime denotes differentiation with respect to arclength.
Arclength is always the physical length of the curve as measured in the
Euclidean embedding space of the surface. ¢; is (j—1) \/(;, with g, =
(g1182— &12&1>) the determinant of the metric of the manifold rather than
that of the interface, which is \/,g; Equation (31) defines K, as a signed
scalar, therefore 7i is defined as 7 rotated by n/2 counterclockwise and
requiring 7 - T =0, leading to

= (—V'gopn—t'gp,u'g; +0'gn) (32)

=
3
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The numerical integration of Eq. (30) for the jth interface point is

done by first computing ./g,, and /g at the point, using these to obtain
K, from Eq. (31) and 7i from Eq. (32), and then by moving the point via
the time map

w(j, t+ Aty =u'(j, 1)+ At MEK(j, t)n*(j, 1);  i=1,2  (33)

This Euler scheme becomes unstable if the discrete time step A4t is too large.
With the « parameter equal to the index of a point along the interface, \/§
is the physical distance between points. Therefore, each interface is evolved
with its own time step At =0.44t with

max?

Al max = 3(/Emin)? (34)

and ./gmin 1S the smallest distance between two neighboring points of
the discrete interface. As the integration proceeds, \/(g:min decreases, which
forces a decrease of At. For this reason, the interface is remeshed with all
points separated by a distance of 1 unit whenever f min < 0.5. The remeshing
algorithm can be made very efficient, one remeshing requiring barely more
than a few integration steps. In flat systems, the interface description is
roughly 5 times faster than the bulk description. On curved surfaces, the
gain increases dramatically: it was 50 or 100-fold in the simulations reported
here, and will be much higher for more complex surfaces. Simulations using
only the bulk description require, for a batch of 40 runs on the type of sur-
faces used here, on the order of 60 to 80 days on an HP9000s735.

The integration algorithm was verified for correctness and accuracy
through several independent checks. Notably, the Non-Euclidean Interface
Velocity equation can be solved exactly for a circular domain in a flat
system. The simulation of such a domain yielded a curve indistinguishable
from the theoretical prediction. Statistical runs starting from random initial
order-parameter configurations were done with both bulk and interface
descriptions and compared by measuring the amount of interface per unit
area and comparing interface configurations and curvatures. Differences
smaller than the interface width were found for the configurations, while
the dynamical growth exponent of domains in flat systems was found to be
0.48 +0.01 with the interface description, closer to the theoretical predic-
tion of 1/2 than the bulk numerical integration result of 0.45 +0.02. The
interface description is hence favored if only in accuracy.

Simulations were also done on the torus manifold with both the bulk
and interface descriptions and found to be once more identical apart
from the similar difference in the dynamical exponents. In general, the
interface description provides more accurate results than the bulk descrip-
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Fig. 3. Interface velocity of stripe domain as a function of 8, on the torus; R =40, r,=20.
Numerical simulation with 40 =0.5 (circles) and 1 (squares), and analytical prediction (line)
are shown. At =0 both top and bottom interfaces are near the outside equator of the torus.

tion, as seen by repeating the simulation of a band domain on a torus
manifold”-'® for different surface mesh coarseness. The interface velocity
from the bulk description converges towards the Non-Euclidean Interface
Velocity theoretical prediction as the surface mesh is refined, while that
from the interface description falls exactly on the theoretical prediction for
all surface meshes used. This is shown in Fig. 3 where v(#) is the interface
velocity, and 6, the Interface position on the torus (the torus manifold with
its coordinate system and manifold are shown below in Fig. 5).

Finally, as a further accuracy check, a circular domain on a surface
consisting of one circular bump was simulated as the interface equations
can be solved analytically. With the surface defined by

X=[u,v, Ade“+v2"] (35)

with A4 the amplitude of the bump and ¢ its half-width, the relationship
between K, and the radius R of the domain is

(36)

\/1 +(AJo)? (R/o)? &/

The comparison of the theoretical prediction and numerical simulation is
shown in Fig. 4 where the product K, R is plotted vs R. Two different sur-
face meshes were used, showing what kind of surface coarseness is sufficient
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Fig. 4. K, R of a circular domain as a function of its radius R, as given by numerical integra-
tion on 2 different grid sizes; also shown is analytical prediction Eq. (36). Error bars too small
to be seen.

for accurate results: the longest surface tether should be around 0.7 units
long for best results, though 1.3 units gave satisfactory results as well, as
seen in the figure.

4. EFFECTS OF SURFACE CURVATURE ON
DOMAIN GROWTH

A naive interpretation of the Non-Euclidean Interface Velocity equa-
tion may suggest that Non Euclidean Model A dynamics should always be
slower than Euclidean dyngmics: |I€'g| is always less than or equal to the
total interface curvature |K|. However diffusion occurs faster (slower) in
regions of negative (positive) surface Gaussian curvature Ks,''? because
there is more (less) area available for a given interface length in a region
of negative (positive) K.?") This suggests that interfaces arising from the
Non Euclidean Model A equation should disappear more slowly where
K;>0, but faster where K;<0. Yet, simulations of the Non Euclidean
Model A on the torus manifold, starting from random initial order-
parameter configurations, showed no dependence whatsoever on Gaussian
curvature.!” This may have been due to the use of the A-structure factor®’
as the measure of the two-dimensional Order Parameter Structure Factor
or to the combination of the topology of the torus with the percolating
domains.

To settle the matter, one ovoid interface was therefore simulated in the
K;>0 region of the torus manifold, another in the K;<0 region and
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Fig. 5. Torus manifold of long radius R and small radius r,. Point P on manifold has coor-
dinates (u', u*) = (0, ). 0=0 and 1 are at inner equator (labeled “ie”), 0 = nr, is at the outer
equator (labeled “oe”).

again in a flat system (K;=0). The torus manifold is convenient for many
reasons discussed in ref. 7, most importantly that two well-separated
regions of oppositely signed Gaussian curvature can be defined on the
torus. A drawing of part of a torus surface with coordinates and parameters
is shown in Fig. 5. The small radius of the torus is denoted r, and the large
one R. The initial radius of the ovoid is such that it is completely included
in the appropriate region of the torus, i.e. nr,/2 as measured in (6, ¢) space
(see Fig. 5).

Figure 6 shows a log-log plot of —dL/d¢ as a function of 1/L, where
L(?) is the time-dependent length of the ovoid interface in the system.
A straight line is obtained in the flat system, as expected for Euclidean
model A. However, differences as large as a factor of two can be seen at
early times with the curved regions, when the domains are large (roughly
20% of system area). The difference remains substantial until the domains
are very small. This suggests that the absence of visible non-Euclidean
effects reported in ref. 7 could be a characteristic of the A-structure factor.
Note that the oscillations for the K;#0 curves are due to the numerical
discretization of the torus manifold.

The above simulation result can be understood analytically with the
help of Eq. (13) by considering surfaces of comstant Gaussian curvature
(i.e., a sphere, a flat plane, and a hyperbolic plane). In this case, a circular
domain remains circular, as indicated by Eq. (28), i.e. the geodesic cur-
vature is constant everywhere along the interface at any given time (but
changes in time). Integrating both sides of Eq. (13) along the interface then
yields —dL/d¢ ~LK2, where K, is a function of time (note also Eq. (29).
It is useful to express K, in terms of K. In a flat system K, =4n°/L* when
the domain boundary has length L. For small K #0, d1men31ona1 analysis
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Fig. 6. Log-log plot of —dL/d¢ vs 1/L. Straight line is for simulation of flat system. The
scatter for nonzero K is due to numerical discretization of the surface.

indicates the first order correction to ng when in a curved surface should
be of the form yK, with y a dimensionless geometrical factor of the order
of 1. Moreover, when K is increased from 0 (i.e. the surface is a sphere
of decreasing radius) while keeping L constant, the geodesic curvature
monotonically decreases, until it eventually becomes 0 when K= (2r/L)>.
On the other hand, when K, is increased negatively from 0 (i.e. the surface
is a hyperbolic plane), the area available to the circular domain increases,
such that in order to keep L constant, the radius of the domain must be
decreased, increasing the geodesic curvature. This leads to the first order
approximation for the time change of the circular domain’s interface
length,

2 2
dL 4=n < L KG> (37)

L 4r?
with y>0, providing a qualitative explanation the difference in growth
laws for the ovoid domains in regions of different Gaussian curvature.

Given the physical origin of the influence of the surface Gauss cur-
vature K; on domain growth in the Non Euclidean Model A, much the
same can be expected in non-Euclidean model B as well as in other systems
where diffusion and interfaces are present on curved surfaces. This slowing
down for positive K; was not observed in numerical simulations of pure
model B on the static sphere,”® because of the short run times used.
However, similar (though not identical) Gauss curvature effects were seen
in simulations of crystal growth on toroidal geometries.® In the context of
phase-ordering kinetics and phase-separation in lipid bilayers, where diffu-
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sion is known to play a very important role biologically, this dependence
on K could be of use in controlling the rate of such processes as protein
diffusion via membrane shape change, or inducing enzyme-protein interac-
tion in limited parts of a cell.

5. SIMULATIONS ON SINUSOID SURFACES

When the initial order-parameter configuration is one of complete dis-
order, the non-linear regime of Euclidean model A is characterized by the
relatively slow motion of sharp, convoluted interfaces delimiting domains
of ¢ = +1 phases. There are two characteristics of Euclidean-model-A
dynamics which are particularly important here. First is the self-similarity
of the dynamics, leading to dynamical scaling: system configurations at a
time ¢, look statistically identical to configurations at an earlier time ¢,, if
they are rescaled lengthwise by an appropriate factor. Hence all dynamical
lengths in the system have the same time dependence, so that they can all
be expressed in terms of one arbitrarily chosen reference length scale L(¢).
The numerical value of L is not as important as its time dependence, which
is the second characteristic of relevance: L(t) ~ tV2

It is common to refer to L as a dominant or typical length scale in the
dynamics, but the order parameter structure factor for Euclidean-model-A
systems shows a peak at zero wavenumber, indicating model-A dynamics
does not have a dominant length scale, only a unique time dependence for
all dynamical lengths. We have shown for the first time, ! '® by consider-
ing the curvature correlations along the interface, that Euclidean-model-A
systems exhibit a dominant undulation mode not present in the order-
parameter structure factor. If one is to talk of a dominant dynamical length
in model A, it is the wavelength of this undulation, not the width of the
order parameter structure factor. This suggests it has a different nature
from that of Fuclidean model B, where the dynamical length is visible in
the order parameter structure factor. Notably, the absence of the dominant
dynamical length in model A’s order parameter structure factor may be due
to the absence of any phase information in it.

Now consider a surface consisting of a large array of bumps:

X= {x, ¥y, A sin <2’;x> sin (ﬁyﬂ (38)

Experimentally, fluid as well as crystalline lipid bilayers are known to
adopt a similar shape (called “egg carton”) under certain conditions.??
Also, more complex surfaces such as self-affine surfaces common to fluc-
tuating lipid bilayer membranes share many of the qualitative features of
sinusoid surfaces.
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Simulations of Non Euclidean Model A on sinusoid surfaces, starting
with random initial order-parameter configurations, were done for several
values of 4 and A, but here we focus on the 1 =20, 4/1=0.2 surface, with
system sizes of 100 x 100 to 300 x 300.

The normalized geodesic curvature autocorrelation function is defined by

_ <Kg(S0> [) Kg(SO+SB t)>
G s, ) === D0 (39)

where ¢ --- > denotes an ensemble average with an average over all inter-
face points s,. It is plotted in Fig. 7, where the horizontal axis has been
rescaled with L(¢), defined here as first zero of the geodesic curvature
autocorrelation function, and the error bars (not shown for clarity®>®) are
much smaller than the vertical offsets of the curves. In flat systems, as
explained in Refs. 16 and 18, all such geodesic curvature autocorrelation
functions fall on top of one another, due to dynamical scaling. Figure 7
thus shows that for the non-Euclidean case, dynamical scaling breaks
down, as expected from our discussion of Eq. (2) but contrary to runs on
the torus manifold. The other important feature is that as time increases,
the dominant interface undulation mode monotonically decreases in inten-
sity, signifying the system’s degree of order decreases as the interfaces
explore ever larger length scales. This is sensible given that when the domi-
nant length is much smaller than the geometrical features of the surface,
the interface correlations decay fast enough to become negligible. As the
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Fig. 7. qu(s, t) at various times from #=35 (long dashed) to t=400 (short dashed), vs
s/L(t). Sinusoid surface used is Eq. (38) with 4 =4, A =20. Inset: Variance of Gaussian part
of GKQ(S, t) vs time (times between 17 and 700).
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undulation wavelength increases, the correlations become negligible at
increasing distances, introducing geometrical variations in the interface
shape, thus increasing the degree of disorder in the system.

These two features—breakdown of dynamical scaling and existence of
a dominant dynamical length—further confirm that the presence of a domi-
nant dynamical length does not guaranty dynamical scaling.

Figure 7 also indicates that the first zero of the geodesic curvature
autocorrelation function can no longer be used as a reference dynamical
length. Two well-defined dynamical lengths valid for interfaces on curved
surfaces are the width ¢ of the Gaussian part of the geodesic curvature
autocorrelation function, and the inverse interface density. Though G Kg(s, t)
is found to remain Gaussian on short length scales, the time dependence of
its width is no longer a ¢! power law, contrary to flat systems. For the
sinusoid surface used here, it was found to be logarithmic. The logarithmic
law is shown in the inset graph to Fig.7, where linear regression gives
0% ~ (63 4 3) log,,(t/t,), with ¢, =6+ 2. This logarithmic time dependence
is not a universal feature, as sinusoid surfaces with smaller values of A/4
showed power-law growth but slower than ¢/ Tt seems likely that a sub-
logarithmic growth law will be seen for larger A/4, similarly to results
reported in ref. 24 on the related Random-Field Ising Model. The width ¢
can be used as the reference length scale L(#) to rescale the geodesic cur-
vature autocorrelation function, as shown in Fig. 8. The inset shows the
result for flat systems, exhibiting dynamical scaling, within error bars. The
main graph shows the result for the sinusoid surface. There the curves
superpose only on short length scales, while at long length scales they
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Fig. 8. Main graph: Same as main graph of Fig. 7 but using L(¢) =0a(?) to rescale GKg(S, t).
Inset: Same as main graph but for flat systems. ‘
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systematically become wider, with the drift being much larger than the
error bars.

While the width of the geodesic curvature autocorrelation function is
a short-length-scale characteristic of the dynamics, the interface density
is more sensitive to large-scale features. It is defined as /(¢)= L(t)/4,,
where L(7) is the total length of interfaces at time ¢ and A, is the system
area (constant in time). Measurements of /(¢) for the sinusoid surface were
done and compared with those in flat systems of various sizes. This is
shown in Fig.9, where —d(In/)/dt is plotted as a function of 1//% This
scale produces one unique curve for all flat systems, independent of system
size or quantity of interface. Any straight line on this plot indicates a power
law in time for /(¢). If the slope of the line is denoted m, the intercept » and
lo,=1(0), then straightforward integration yields

(1) = (12" —2m10%t) 2 (40)

indicating /~ t'/>" at late times. More negative m thus corresponds to

slower interface dynamics. The interface density has units of one over
length, while the dominant length scale in Euclidean model A grows as '/,
Hence the scaling assumption valid for flat systems predicts [~ ¢~/ ie. m
should be equal to -1 in flat systems. The linear regressions for the flat
system curve (where bulk integration was used rather than the interface
description) gives m= —1.07+0.01, which means a power law of
—0.46 +0.01 instead of —1/2.

B..

.
2} o ™
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log,{~din(t)/dt)

4+ o flat, 200x200
4 flat torus, 126x252
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Fig. 9. Logarithmic plot of d In(/)/d¢ as a function of 1//2, for sinusoid surface 4 =4 and
A=20 (circles). Points for flat system are triangles and squares, lines are linear regressions.
Error bars (not shown) are approximately same size as symbols.
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At early times (small values of 1//?), model-A dynamics on the
sinusoid surface also follows the same power law. At later times however,
one can distinguish a fairly long time regime, extending from ¢~ 250 to
t ~ 1600, almost a full decade of time, during which m is more negative.
The dynamics has therefore substantially slowed down. Linear regression in
this time domain gives m = —1.70 + 0.04, corresponding to a power law
behavior for [ of %3, A batch of runs for a smaller system of size 100 x 100
gave m= —2.040.1, suggesting the statistical error on the slope could be
as large as 20 to 30%.

A very interesting characteristic of this plot is the presence of a very
late time regime, where the dynamics is extremely slow, with the slope
m= —8 + 2. This starts at r~2000, independent of system size and dis-
cretization. Real-time animation of moving interfaces in this regime shows
that the geodesic curvature is zero almost everywhere, but not in suf-
ficiently many places to completely halt the dynamics. The interfaces, which
waver between the bumps, are very slowly hopping the bumps one by one.

6. METASTABLE STATES

Corrugated surfaces (such as given by Eq. (38)) allow for local minima
to appear in the configuration space of interfaces and therefore to trap the
latter in metastable states, because Eq. (29) implies that Non Euclidean
Model A interfaces can only decrease their length. The simplest example of
this would be an ovoid interface circumventing two bumps on the sinusoid
surface, as pictured in Fig. 10. Consider the interface as it shrinks in length.
It is forced to tilt itself, slowly moving on the outside towards the
extremum of each bump. The total curvature at a point of the interface is

wiphsi = Jid beta - 00 e - D010 dd - 098

Fig. 10. Three-dimensional view of the 2-bumps surface with the ovoid interface (white line).
System size 40 x 20, 4 =10, 2 =40. Surface is shown as transparent to interface.
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>

interface

Fig. 11. Side view of surface shown in Fig. 10 with projection of ovoid interface on xz plane,
at a later time when the interface is almost stationary, i.e. 7 and K are almost parallel.

the curvature as measured in three-dimensional embedding space. Recall
that the total curvature vector K of a geodesic line on the surface is normal
to the surface since K, =0 for a geodesic. Therefore a necessary condition
for the interface to become stationary is for a configuration to exist where
K, near both ends of the ovoid domain, is normal to the surface. A side
view (x — z projection) of the bumps with the interface is pictured in Fig. 11
and a top view (x — y projection) in Fig. 12. This is not a sufficient condi-
tion however since a// points along the interface must satisfy this criterion,
but it does provide a minimal condition.

We now denote the vector going from O to P in Fig. 11 as R=
[x, Asin(kx)]. The tangent to the surface in P is therefore =
[ 1, Ak cos(kx)], and the condition is R - # = 0, leading to the transcendental

Fig. 12. Top projectional view for Fig. 11. Interface is thick line. K is curvature vector, other
symbols correspond to those in Fig. 11. Line 4B is “pivot” line for interface. Circles are con-
tours for the surface.
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equation 2x = — A% sin(2kx). With the substitution x’ =2kx and y= Ak
this is written

This equation has a solution only when y is larger than a certain value, for
when y — 0 the left hand side tends to — oo while the right hand side is
bounded between 1 and roughly —0.22. The condition is therefore
—1/y*2 —0.22, or

A
52034 (42)

This was tested numerically for fixed 2=40. Simulations give a
threshold of 0.42 +0.02. This is an error of 20%, surprisingly good con-
sidering that the approximation uses a one-dimensional projection of the
interface on the surface: it is not unusual for the presence of a second
dimension to give a system more freedom, thereby softening constraints
such as Eq. (42).

It is important to note that Eq. (42) is a necessary (minimal) condition
for interfaces to get blocked around fwo bumps, and that blockage around
a larger number of aligned bumps occurs at similar or larger values of 4/A.
This can be seen by considering three aligned bumps instead of two. The
middle bump constrains the interface to belong to the xy plane in its
vicinity, so that point O of Fig. 11 still lies between bumps rather than, say,
at the center of the middle bump. The condition Eq. (42) therefore still
holds for any number of aligned bumps larger than or equal to two. This
is sensible since what matters is A, not the number of bumps.

However the situation is the reverse for bumps that are not aligned,
which is more relevant with regards to the results of the Non Euclidean
Model A simulations on sinusoid surfaces. Consider 4 bumps in a 2x2
array, and an interface that circumnavigates the four bumps. A top projec-
tional view is shown in Fig. 13. Point O, one of the interface pivot points
on segment AB, is still halfway between bumps, near the system boundary.
The maximum-curvature director however no longer lies along x but along
the line x = y. Therefore, the pivot point normal to the interface at P is at
O’ rather than O, decreasing the apparent wavelength by a factor of ﬁ,
so that smaller amplitudes (by the same factor) are sufficient to trap the
interface. In this case the threshold decreases to 0.24, with simulations giv-
ing 0.270 +0.006. The proximity to this threshold of 4/A=0.2 in the
sinusoid simulations of the last section explains the existence of the very-
late-stage, extremely-slow regime evidenced on Fig. 9.
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Fig. 13. Top projectional view for interface around four bumps. Same conventions are used
as in Fig. 12. The pivot point is now O’ rather than O.

The same kind of argument can be extended to, say, 6 bumps in a
hexagonal configuration, bringing O’ yet closer to P. For a large surface
consisting of a great number of bumps, gradually increasing A4 from zero
should cause interfaces to become stationary first around very large con-
glomerates of bumps. However the larger the conglomerate must be, the
rarer the occurrence. As A is increased further, smaller conglomerates of
bumps trap closed interfaces, until an A4 is reached where the domains stop
growing when the dominant interface undulation length becomes com-
parable to the surface A, leading to long-range disorder.

The metastability thresholds can be generalized to more complex sur-
faces. For instance, lipid bilayer membranes are usually characterized by
their bending rigidity x. Such membranes form random self-affine surfaces
whose average square width W?2 is given by®

_LkaT

w2 = (43)

43K

where L, is the size of the membrane as projected on the xy plane. The
amplitude 4 can be approximated by the width W for a given size, while
the wavelength A can be approximated by L,. As a consequence of Eq. (42),
phase ordering may not occur at all if k SkgzT/8, as in this case Eq. (42) is
satisfied on all length scales L,. As k is decreased towards k ;7/8, the Non
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Euclidean Model A dynamics should gradually slow down. When
K <kgT/8, domains might still form but freeze in their early disordered
state.

For real systems the hopping condition on x is not likely to be as
simple, since for such small values of x the surface tension ¢ will usually be
non negligible. The main difference is that the threshold involves x, ¢ and
the length scale of interest, without introducing any new difficulty. This
suggests that domains could order for some time, until their dominant
interface undulation length becomes larger than a certain threshold value.

In flat systems, it was shown by Bray®® that model A exhibits a zero-
temperature strong-coupling fixed point. The existence of metastable inter-
face configurations on corrugated surfaces implies that thermal noise
changes the quality of the dynamics once the domain interface undulations
are on the same scale as the surface corrugations, thereby eliminating the
fixed point. Consequently, in the very-late-stage (i.e. extremely slow) regime
observed on sinusoid surfaces, interfaces will move predominantly via ther-
mally-activated hopping. Similar conclusions should be valid for model B.
Effect of thermal noise needs to be carefully considered.

7. TOTAL CURVATURE CORRELATIONS

There is a second form of curvature autocorrelation involving the fotal
curvature K of the interface, i.e. the curvature of the interface measured in
three-dimensional space rather than in the two-dimensional space of the
manifold. In three dimensions, a curvature scalar can not be well defined.
The vector of curvature is the only way to properly represent the curvature
of the interface, so a dot product must be used in this case:

<IZ(O7 Z) 'IZ(S, t)>
(K0, 1)%)

Ge(s, t) (44)

Note that for flar systems, where the scalar product of two Kg is
straightforward, both definitions of curvature autocorrelation, the total and
the geodesic one, give the same function. It is only in curved surfaces that
they differ in very important ways. In the curved case, when an interface is
stationary, it is so only because K, is 0 everywhere and the interface is per-
fectly autocorrelated, from a two-dimensional point of view. This perfect
autocorrelation stems from the fact that if two-dimensional observers
within the manifold knew the position and orientation of the interface at
one point of the interface, they would know the complete shape of the
interface by solving the equations defining geodesics'® with the appro-
priate initial values. The only disorder remaining in the system is that
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arising from the relative position of the domains and from the extrinsic
geometry of the geodesic lines on the surface. This is not measurable via a
geodesic curvature autocorrelation function.

On the other hand, the total curvature of a convoluted interface at
early times, when the domains are much smaller than any geometric length
scale of the surface, is equal to the geodesic curvature of the interface, in
modulus. Under this condition the total and geodesic curvature auto-
correlation function are nearly identical at early times (analytically they are
rigorously equal). At late times, when an interface has become stationary,
the total curvature at a point of the interface is the curvature of the surface
along the direction of that interface. This total curvature autocorrelation
function will therefore give information about the curvature autocorrela-
tions of the surface along geodesic lines. This information is part of the
extrinsic geometry of the surface and does not enter the geodesic curvature
autocorrelation function. The two autocorrelation functions are therefore
complementary for interface dynamics on curved surfaces.

When the interface correlations decay faster in space than the
wavelength of the surface, Gg(s, ¢) is, as discussed earlier, qualitatively very
close to G,(g(s, t). Both correlation functions are not exactly equal as the
scalar product in Gg(s, t) produces a slightly stronger dip amplitude by
about 20%, and the error bars are substantially smaller in Gg(s, t). Near
the minimum they are as much as 3 times smaller. However, while the
average K, decreases in time, the K eventually starts increasing until it
reaches values compatible with the surface 1. Therefore, Gg(s, t) becomes
very different from G Kq(s, t) at late times.

1.0 T T ™
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Fig. 14. Gg(s, t) for the sinusoid surface 4 =4, 1 =20.
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Figure 14 shows Gg(s, t) for the runs on the sinusoid surface, Eq. (38)
with 4 =4 and 1=20, at times between 17 and 10000 (17, 35, 50, 100,
150... 400, 500, 700, 1000, 1200, 1450, 1750, 2100, 2500, 3000, 4000...
10000). The curves for =17 and 10000 are labeled, with curves at inter-
mediate times moving gradually and monotonically from the former to the
latter. For this surface, the wavelength of the bumps is not much larger
than the initial dominant length scale of the interfaces in Euclidean
systems, so that a cross-over regime is not seen. The correlations simply
increase in time, as more and more interfaces coarsen while being pushed
between the bumps and adopting the surface’s wavelength. At late times,
the interfaces can be approximated by a random sequence of straight lines
of length 4/2 and arcs of radius A/4 and arclength (z/4) A/2. This explains
the peak positions in Gg(s, ) being roughly at integer multiples of
(m/4) A/2. At early times, only two peaks can be seen, with a third peak
starting to appear. The emergence of the peaks at larger distances seems to
coincide with the Euclidean regime in Fig.9. During the slow regime
(250 £ <51600), no more peaks appear. Those that have formed grow
slowly in amplitude and saturate. Figure 15 shows shows Gg(s, t) for a
sinusoid surface consisting of two wavelengths rather than one:

X= [x, y, 4 sin(2nk, x) sin(2nk, y) + 6.25 sin(2nk,x) sin(27k, y) ] (45)

Gyls)

Fig. 15. Gg(s, t) for the bimodal sinusoid surface, Eq. (45) with 1, =40 and 4, =50. Times
are t =17, 24, 35, 60, 100 with the remaining times at same values as in Fig. 14.



Kinetics of Phase Ordering on Curved Surfaces 977

where 1, =2n/k, =40 and 1, =2n/k,=50. Hence both have 4/~ 0.1 and
the undulations of this surface are of longer wavelength than the previous
one. In this case, the earliest curve looks exactly like G%(s, ¢) in flat systems
and even has the dip positioned at roughly the same value, namely s ~ 10.
Already at ¢ =24 the interfaces are being pulled into the valleys between
the bumps. This is the crossover regime. The curvature correlations settle
into their definitive value around 7= 100, close to (n/4) /2 with A around
40. Much longer wavelengths would be necessary to distinctly show the
three regimes: a scaling regime at early times during which the amplitude
of the minimum would not change, then the cross-over during which the
dominant length scale saturates to a dominant mode of the surface, and
finally the late-time regime where the interfaces move more slowly and hop
the bumps. Note that contrary to the 4 =4, 1 =20 case, the very-late-stage
regime of Fig. 9 never occurs because A/A is not large enough.

8. SUMMARY AND CONCLUSIONS

In summary, the non-Euclidean model A was used as a starting point
for the more complex, Random-Field Ising Model like®2"-2% models used
in some lipid membrane® and related surface problems. By deriving a set
of geometric dynamical equations, using the non-Euclidean interface
velocity equation ¥ =M521?g and developing an interface description,
numerical simulations of this difficult system could be carried out and the
results analyzed and understood qualitatively. Moreover, the techniques
should be applicable without major impediments to dynamical surfaces and
model B on curved surfaces.

Whereas Random-Field Ising Model systems exhibit decelerated
growth in the form of logarithmic growth laws of various kinds, here we
have shown how model A on curved surfaces exhibit similar richness of
dynamics without a bilinear coupling to the surface: (i) the time dependence
of the amount of interface is strongly affected by the local Gaussian cur-
vature of the surface, (ii) different dynamical lengths have different and
even logarithmic time-dependencies leading to the breakdown of dynamical
scaling without the disappearance of the dominant interface undulation
mode, and (iii) metastable states exist above a threshold value of A4/A,
leading to thermally activated hopping in the new very-late-stage regime.
A more systematic study of the effect of K, a better quantitative under-
standing of the observed time dependencies of L, and experimental
methods to obtain the dominant interface undulation mode, would be use-
ful at this point.
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